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Abstract. Epidemiological models may provide public health practitioners with some 

fundamental guidelines, allowing for the examination of issues that may influence disease 

prevention and treatment techniques. On establish the relative impact of the model parameters 

to disease transmission, a sensitivity analysis of the epidemiological model is undertaken. A 

sensitivity analysis of the Susceptible, Exposed, Infectious, and Recovered (SEIR) model of 

corona virus 2019 (COVID 19) was undertaken to determine the parameters' influence on the 

basic reproduction number and endemic equilibrium. The rate of contact between susceptible 

individual and exposed individuals and rate of exposed to infected individuals are the most 

impactful parameters on the basic reproduction number and the number of infectious 

individuals, according to our findings. Furthermore, the number of people who have been 

exposed is affected by the rate at which they proceed from exposed to infect. The findings 

show that if infectious people recover faster, the number of contagious people will decrease. 

1.  Introduction 

COVID-19 is spread by people who have been infected with the corona virus, according to the World 

Health Organization (WHO). When someone infected with this virus sneezes or coughs, little droplets 

from their nose or mouth can easily spread the infection. The drips then settle on touched items or 

surfaces, and the healthy person adjusts their eyes, nose, or mouth accordingly. Compilation of small 

droplets breathed by someone compiling switch with the one supported by corona [1] is one way to 

propagate the corona virus. It is critical to travel 1 meter further than sick persons. "Until now, no 

research has shown that the COVID-19 corona virus can be spread through the air," revealed WHO on 

March 23, 2020 [2] as quoted from its website.  

In various parts of the world, the number of instances of corona virus infection, which causes 

Covid-19, continues to rise. Each region has a different pace of increase in terms of infection, death, 

and cure. Each country has its own viral control policy to prevent the spread of viruses that develop on 

its soil. Mathematical modeling of SIR, SIRS, SEIR, and SEIRS on the transmission of diseases such 

as dengue fever, tuberculosis, diabetes, and HIV-AIDS has been done by [3–18], and then 

mathematical modeling on the spread of COVID-19 has been done by [19], namely SEIRV 
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mathematical modeling in Wuhan, China, taking environmental factors into account, while the 

analysis and simulation of the model used data. 

Mathematical modeling has been widely utilized to discover and study the dynamics of disease 

propagation [20, 21], as well as to assess the efficacy of health interventions such as Wolbachia 

bacteria [22, 23] and immunization [24, 25].  The mathematical model of disease propagation is 

typically formulated as a deterministic [26] or stochastic mathematical model [27. One of the 

challenges in analyzing the dynamics of disease spread or the effectiveness of a health intervention 

using a mathematical model is the sensitivity of the parameters to the results of the mathematical 

model. Sensitivity analysis is used to figure out which parameters and initial conditions (inputs) have 

an impact on the model's needed quantity (output). This has an impact on the accuracy of the 

mathematical model's predictions or outcomes. As a result, when using a mathematical model to 

analyze the dynamics or effectiveness of health interventions, sensitivity analysis is required to 

discover the most relevant parameter in the mathematical model [28, 29].   This information is crucial 

and beneficial throughout the parameter estimate stage, as well as the interpretation of research 

findings and the search for possible solutions if the parameter value changes. There are two forms of 

sensitivity analysis: local and global. The one-at-a-time (OAT) technique is used in the local 

sensitivity analysis, which is the most basic method with partial differentiation, in which various 

parameter values are taken one by one. Meanwhile, in global sensitivity analysis, all inputs are 

modified at the same time across the input space, typically utilizing a sampling-based approach that is 

frequently done with the Monte-Carlo method [29]. 

This research examines the epidemic model's locally sensitivity to the basic reproduction number 

(epidemic threshold) and infected fixed points. This research attempts to identify the parameters that 

have the most impact on the 2019 Covid epidemic model's basic reproduction number and infected 

fixed sites. 

2.  Mathematical Modelling 

The SEIR model was presented by Annas et al. in 2020 [30]. The dissemination of COVID-19 is 

separated into four divisions in the SEIR model, notably Suspected (𝑺), Exposed (𝑬), Infected (𝑰), dan 

Recovered (𝑹). Individuals in an infected class have the potential to infect others. The SEIR model 

can analyse changes in Covid-19 transmission in each human community as the following model: 
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 − (𝛼𝐼 + 𝜇 + 𝑣)𝑆,  

𝑑𝐸

𝑑𝑡
= 𝛼𝐼𝑆 − (𝛽 + 𝜇)𝐸,  

𝑑𝐼

𝑑𝑡
= 𝛽𝐸 − (𝜎 + 𝛿 + 𝜇)𝐼,  

𝑑𝑅

𝑑𝑡
= 𝛿𝐼 + 𝑣𝑆 − 𝜇𝑅, (1) 

where  𝑁  is the whole human population, 𝑆 is Number of people who are susceptible, 𝐸 is Total 

population at risk, 𝐼 is infected people's numbers, 𝑅 is the total population recovered, 𝜇 is Population 

birth/ death rate, 𝛼  is probability of change from 𝑆 to 𝐸 populations, 𝛽 is probability of change from 

𝐸 to 𝐼 populations, 𝜎 is  COVID-19's population mortality rate, 𝛿  is probability of change from 𝐼 to 𝑅 

populations and 𝑣 is Vaccines from Unknown Sources. From Annas et.al. (2020) [30] is obtained two 

equilibrium points, i.e. equilibrium points for Free disease, 𝐸0 = (𝑆∗, 𝐼∗, 𝑅∗) = (
𝜇

(𝜇+𝑣)
, 0,0,

𝑣

(𝜇+𝑣)
)  and 

endemic point 𝐸𝑒 = (𝑆∗∗, 𝐸 ∗∗, 𝐼∗∗, 𝑅∗∗) where 

𝑆∗∗
(𝜇𝑖 + 𝛿 + 𝜇)(𝛽 + 𝜇)

𝛼𝛽
, 

𝐸 ∗∗=
𝛼𝛽𝜇 − (𝜇𝑖 + 𝛿 + 𝜇)(𝜇 + 𝑣)

𝛼𝛽
, 
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 𝐼 ∗∗=
𝛼𝛽𝜇 − (𝜇𝑖 + 𝛿 + 𝜇)(𝜇 + 𝑣)(𝛽 + 𝜇)

𝛼(𝜇𝑖 + 𝛿 + 𝜇)(𝛽 + 𝜇)
, 

𝑅 ∗∗=
𝛿𝛼𝛽2𝜇 − 𝛽(𝜇𝑖 + 𝛿 + 𝜇)(𝜇 + 𝑣)(𝛽 + 𝜇) − 𝑣((𝜇𝑖 + 𝛿 + 𝜇)(𝛽 + 𝜇))

2

𝛽𝛼2(𝜇𝑖 + 𝛿 + 𝜇)(𝛽 + 𝜇)
. 

While the basic reproduction number (𝑅0) which determined by generation matrix method as 

𝑅0 =
𝛼𝛽𝜇

(𝜇 + 𝛽)(𝜇 + 𝑣)(𝜇𝑖 + 𝛿 + 𝜇)
 (2) 

 

3.  Sensitivity Analysis 

It is vital to discover numerous aspects that contribute to the virus's transmission and prevalence in 

order to decide the best technique for minimizing the number of affected people. The first case of 

COVID-19 transmission was linked to 𝑹𝟎 and those who had been exposed to the virus.  

 

Tabel 1. Estimation of parameter values in cases of COVID-19 

Parameter Value References 

𝝁 𝟔. 𝟐𝟓 × 𝟏𝟎−𝟑 [25] 

𝜶 𝟎. 𝟔𝟐 × 𝟏𝟎−𝟖 / 𝒑𝒆𝒓𝒔𝒐𝒏 / 𝒅𝒂𝒚 [11] 

𝜷 3 hari [30] 

𝝈 𝟕. 𝟑𝟒𝟒 × 𝟏𝟎−𝟕 [21] 

𝜹 0.0006667 per day [30] 

𝒗 𝟏% [30] 

 

3.1.  Sensitivity Analysis of Basic Reproduction (𝑅0) 

The sensitivity index of each model parameter, which is connected with the basic reproduction 

number,𝑹𝟎, is calculated in this section. This index indicates the relative importance of each parameter 

in the model that depicts COVID-19 transmission.  The index is used to find the parameter with the 

greatest impact on 𝑹𝟎, which is subsequently utilized as the intervention's target. Parameters with a 

large impact on 𝑹𝟎 imply that they have a significant impact on COVID-19 endemicity. An technique 

similar to that outlined was used to derive the sensitivity index parameter to the basic reproduction 

number.  

Definition 1 [31]: The normalized sensitivity index is calculated using the normalized sensitivity index 

of the variable 𝑹𝟎, which is differentiable on the parameter p: 

𝐶𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0
 (3) 

where 𝑹𝟎 is the variable to be analyzed and is the parameter. 

The sensitivity index will be used to determine the impact of each parameter on a disease's epidemic, 

allowing measures to be made to control its spread. The sensitivity index of each parameter is derived 

from 𝑹𝟎 using definition 1 above. The sensitivity index of each parameter is calculated at the basic 

reproduction number 𝑹𝟎, shown in Table 2, by referring to the formulation of equation (3) and the 

parameter values in Table 1. The sensitivity index 𝑹𝟎 to the parameters, for instance, is 

𝐶𝜇
𝑅0 =

𝜕𝑅0

𝜕𝜇
×

𝜇

𝑅0
 

         = (
𝑅0

𝛼
) ×

𝛼

𝑅0
 

         = 1 
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and  

𝐶𝛽
𝑅0 =

𝜕𝑅0

𝜕𝛼
×

𝛽

𝑅0
 

= 𝑅0 (−
1

(𝛽 + 𝜇)
+

1

𝛽
) ×

𝛽

𝑅0
, 

=0.0021 

where 𝑹𝟎 =
𝜶𝜷𝝁

(𝝁+𝜷)(𝝁+𝒗)(𝝈+𝜹+𝝁)
. 

 

The findings can be found in the following table. 

 

Table 2. Index of model parameters related to basic reproduction number 

Parameter Parameter value Sensitivity Index 

𝜇 6.25 × 10−3 −0.2902 

𝛼 0.62 × 10−8 / person / day  1 

𝛽 3 day 0.0021 

𝜎 7.344 × 10−7 −0.0001 

𝛿 0.0006667 per day −0.0964 

𝑣 1% −0.6154 

 

The sensitivity index of each parameter in the basic reproductive number, 𝑹𝟎, provided in Table 2, is 

calculated using the formulation of equation (3) and parameter values from Table 1. The sensitivity 

index in Table 2 sequentially shows the parameter with the highest sensitivity to the lowest sensitivity. 

The parameter 𝜶 and 𝜷 has a positive sensitivity index, while the parameter 𝝁, 𝝈, 𝜹 and 𝝂 have a 

negative sensitivity index. Positive sensitivity indexes indicate that the increase in basic reproductive 

numbers is significant. As a result, increasing (or decreasing) the value of the parameter while 

maintaining the value of the other parameters will lead to increases (or decreases) in the basic 

reproductive numbers. Negative sensitivity indexes indicate that the rise in basic reproductive numbers 

has a negative significance. In other words, increasing (or reducing) the value of the parameter while 

the values of the other parameters remain constant will result in decreases (or rises) in the basic 

reproductive numbers.  

3.2.  Sensitivity analysis to infected points (𝐼∗∗) 

Sensitivity analysis of 𝐈∗∗ was conducted to determine which parameters have the most effect on 𝐈∗∗. 

The parameters to be analyzed are 𝛂, 𝛃, 𝛔, 𝛅, 𝛖. The results of the sensitivity index of the parameters to 

the infected fixed point are determined using the same approach as defined in definition 1, and the 

following table 3 summarizes the findings. 

 

Table 3.  Sensitivity Index of Parameter to Infected Point. 

Parameter Parameter value Sensitivity Index 

𝜇 6.25 × 10−3 −1.613 × 108 

𝛼 0.62 × 10−8 / person / day  4.227 × 1014 

𝛽 3 day 0.0006 

𝜎 7.344 × 10−7 −130.343 

𝛿 0.0006667 per day −130.343 

𝑣 1% −1.613 × 108 

 

Table 3 shows the value of the sensitivity index of the model parameters. Positive values for the 

parameters 𝜶 𝐚𝐧𝐝 𝜷 illustrate that the prevalence of the disease increases with increasing parameter 
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values while the sensitivity index of the parameters 𝝁, 𝝈, 𝜹 and 𝝂 are negative indicating the opposite. 

Thus, the parameters 𝝁, 𝝈, 𝜹 and 𝝂 contributed to the decrease in the value of the infected number and 

thus, contributed to the decrease in the prevalence of the disease. Moreover, the table shows that the 

most positive sensitive parameter is the spread rate of the COVID19 virus and the most negative 

sensitive model parameters are the decrease in infections due to the COVID19 virus. 

4.  Conclusions  

In this work, we have discussed the SEIR model of Covid 19 disease. We carried out a sensitivity 

analysis to determine the important model parameters that significantly affect the dynamics of Covid 

19 disease transmission in Indonesia. We observed that the most important sensitive parameters were 

and (positive) and other rates (negative). Increased rates of exposure and infection increase disease 

transmission and increased mortality reduces disease transmission significantly. Thus, increasing the 

mortality rate and reducing the rate of spread of the virus can reduce the prevalence of the COVID-19 

disease. Very sensitive parameters must be estimated carefully, as small variations in these parameters 

will lead to large quantitative changes. An insensitive parameter, on the other hand, does not require 

much effort to estimate, because a small variation in that parameter will not result in a large change in 

the desired quantity. 
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