CHARACTERISTICS OF SHACKLE GRAPH: $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right), \operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right), \&$

$$
\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)
$$

Oleh:

Firmansyah ${ }^{1}$, Abdul Mujib ${ }^{2}$
Pendidikan Matematika, FKIP, Universitas Muslim Nusantara Al-Washliyah
E-mail: ${ }^{1}$ firmansyah@umnaw.ac.id, ${ }^{2}$ mujib@umnaw.ac.id

> doi : 10.30821/axiom.v10i2.9252

Abstract

Abstrak: Operasi schackle adalah operasi antara dua atau lebih graf yang menghasilkan graf baru. Graf shackle dinotasikan shackle $\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ adalah graf yang dihasilkan dari t salinan dari graf G yang diberi simbol dengan $\operatorname{Shack}(G, t)$ dimana $t \geq 2$ dan t bilangan asli. Operasi shackle ppada penelitian ini adalah shackle titik. Operasi shackle titik dinotasikan dengan shackle (G, v, t) artinya graf yang dibangun dari sembarang graf G sebanyak t salinan dan titik v sebagai linkage vertex. Kelas graf yang akan di eksporasi karakterisinya dan bilangan kromatinya adalah $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right), \operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, \& $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)$. Hasil penelitiannya menunjukkan bahwa bilangan kromatik graf shackle sama dengan subgraf pembangunnya.

Kata Kunci:

Operasi Shackle, Shackle titik, graf shackle, bilangan kromatik.

Abstract:

A shackle operation is an operation between two or more graphs that results in a new graph. Shackle graph notated $\operatorname{Shack}\left(G_{1}, G_{2}, \ldots, G_{t}\right)$ is a product graph from t copy of graph G is denoted by Shack (G, t) where $t \geq 2$ and t are natural numbers. The shackle operation in this research is vertex shackle. Vertex shackle operation is denoted by Shack (G, v, t) which means that the graph is constructed from any graph G as many as t copies and vertex v as linkage vertex. The class of graphs examined in this study are $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right), \operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right), \&$ $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)$. The results show that the chromatic number of the shackle graph is the same as the subgraph that generates it.

Keywords:

Shackle Operation, Vertex Shackle, Shackle Graph, Chromatic Numbers.

A. Introduction

Graph theory is an interesting study in Discrete Mathematics, which discusses the properties of graphs (Mujib, 2011, Diana, Suryaningtyas, \& Suprapti, 2016). Graphs have long been known and are widely applied in various fields of science, which are still being developed now. Graphs have been widely used in computing, modeling, and even gaming (Diana et al.,

2016, Maarif, 2017, Mujib \& Assiyatun, 2011). In general, a graph is a set of pairs (V, E) where V represents a non-empty set of vertices and E is a set of edges connecting a pair of vertices on the graph. A Graph G is a pair of sets (V, E) where V is a non-empty set called vertices and $E \subseteq V^{2}$ which is a 2-element subset of V called sides (Bondy \& Murty, 2008). The graph is presented in the form of a graph with the elements of the set V represented as points, while the elements of the set E are the lines connecting two corresponding vertices.

Figure 1. Graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$
Figure 1 above, is an example of the graph $G=(V, E)$. Where is the set of vertices $V=\left\{v_{i}: i=1,2,3, \ldots, 6\right\}$ and the set of sides $E=\left\{e_{j}: j=1,2,3, \ldots, 11\right\}$. Side $e_{2}=v_{2} v_{3}$ because it connects vertex v_{2} with v_{3}. Therefore, it is called v_{2} adjacent to v_{3}, besides v_{2} is adjacent to vertices v_{1}, v_{4}, and v_{6}, while the relationship between v_{2} and v_{5} is not neighboring or is called independent. Let e_{1} and e_{2} are two edges of graph G. The edges e_{1} and e_{2} are called independent if e_{1} and e_{2} are not adjacent. Likewise, two vertices on G are independent of each other if they are not adjacent. Graph G is called a complete graph, denoted by K_{n} if every two vertices in G are adjacent. A graph G is called finite if the set of vertices $V(G)$ is finite. The number of vertices on graph G is called the order of G, denoted by $|V(G)|$, while the number of edges on graph G is called the size of G, denoted by $|E(G)|$. The number of edges attached to a vertex v in G is called the degree of the point v, denoted by $d_{G}(v)$ (Hartsfield \& Ringel, 2003).

The smallest degree of graph G is denoted by $\delta(G)$, while the largest degree on graph G is denoted by $\Delta(G)$. Graph G in Figure 1 has a sequence of degrees $d_{G}\left(v_{1}\right)=d_{G}\left(v_{2}\right)=\cdots=$ $d_{G}\left(v_{6}\right)=4$, while $\delta(G)=\Delta(G)=4$. A graph G is called a regular graph if the degrees of the vertices are equal. A graph $G=(V, E)$ is called a k-regular graph if $d_{G}(v)=k$ for every $v \in V$. The graph K_{n} is a graph $(n-1)$ - reguler, because each point has a degree of $n-1$. The cycle graph of order $n ; n \geq 3$ denoted S_{n} is a 2 - regular connected graph (Bondy \& Murty, 2008).

Figure 2. Graph K_{4} and Graph S_{5}

Figure 2 shows a complete graph K_{4}, where each vertex has a degree of 3 . Therefore, it is called a 3 - regular graph. Whereas, S_{5} is a 5 -vertices cycle graph with each vertex having a degree of two, called 2 - regular. A graph $G=(V, E)$ is called a bipartite graph if V can be partitioned into two non-empty subsets X and Y such that for each edge of G one end is at X and the other is on Y. Suppose $|X|=m$ and $|Y|=n$ where $m, n \geq 2, m, n \in \mathbb{N}$. If every vertex in X is adjacent to a vertex in Y, then G is called a complete bipartite graph, denoted by $K_{m, n}$.

Figure 3. Graph $\boldsymbol{K}_{\mathbf{3 , 4}}$ and Graph $\boldsymbol{K}_{7,7}$
The $K_{3,4}$ graph in Figure 3, is a bipartite graph but it is not complete. Because not every vertex in X connects at Y. Whereas Graph $K_{7,7}$ is a complete bipartite graph (Saifudin, 2020). In the study of graph theory, the operation between two graphs is one way to obtain new graphs. There are various types of operations on a graph, one of which is the shackle operation (Diestel, 2005). In this study, the researcher examines the characteristics of the graph $\operatorname{Shack}\left(K_{n}, v_{(j, i}, t\right)$, $\operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, and $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)$.

B. Theoretical Studies

Definition 1 (Maryati, Salman, Baskoro, Ryan, \& Miller, 2010)
Let $k \geq 2$ be an integer. Define shackle as a graph construction by connected non-trivial graphs $G_{1}, G_{2}, G_{3}, \ldots, G_{k}$ such that G_{s} and G_{t} do not have a common vertex for every $s, t \in[1, k]$ with $|s-t| \geq 2$ and every $i \in[1, k-1] G_{i}$ dan G_{i+1} have exactly one common point called linkage vertex, and $k-1$ linkage vertex is different. The shackle graph is denoted by $\operatorname{Shack}\left(G_{1}, G_{2}, \ldots, G_{k}\right)$.

Henceforth, the shackle graph is denoted by $\operatorname{shack}(G, v, t)$. The graph $\operatorname{shack}(G, v, t)$ means that the graph G is copied t times with vertex v as the vertex linkage. For example, Cycle Graph S_{4} with $t=3$ and vertex $x_{i}, i=2,3$ as vertex linkage, then Figure 4 below is the result of the shackle operation on graph S_{4}.

Figure 4. Graph $\operatorname{Shack}\left(S_{4}, x_{i}, 3\right)$

Based on Figure 4, Graph $\operatorname{Shack}\left(S_{4}, x_{\mathrm{i}}, 3\right)$ has a set of vertices, namely $V=\left\{x_{i}: i=\right.$ $1,2,3,4\} \cup\left\{y_{j}: j=1,2,3\right\} \cup\left\{z_{k}: k=1,2,3\right\}$ and a set of edges, namely $E=\left\{x_{i} y_{j}, x_{i} z_{i}: i=j, i=\right.$ $1,2,3\} \cup\left\{y_{j} x_{i}, z_{k} x_{i}: i=j+1\right.$ or $\left.i=k+1, j=k=1,2,3\right\}$. The cardinalities of V and E respectively $|V|=3\left|V\left(S_{4}\right)\right|-2=10$ and $|E|=3\left|E\left(S_{4}\right)\right|=12$. In addition, the maximum degree of $\operatorname{Shack}\left(S_{4}, x_{\mathrm{i}}, 3\right)$ is $\Delta\left(\operatorname{Shack}\left(S_{4}, x_{\mathrm{i}}, 3\right)\right)=4$ and the minimum degree of $\operatorname{Shack}\left(S_{4}, x_{\mathrm{i}}, 3\right)$ is $\delta\left(\operatorname{Shack}\left(S_{4}, x_{\mathrm{i}}, 3\right)\right)=2$.

This article discusses a new graph of the product of the shackle operation. The graphs to be studied are $\operatorname{shack}\left(K_{n}, v_{i}, t\right), \operatorname{shack}\left(S_{n}, v_{i}, t\right)$, and $\operatorname{shack}\left(K_{n, n}, v_{i}, t\right) . \operatorname{Shack}\left(K_{n}, v_{i}, t\right)$ is a complete graph K_{n} which is copied as many as t with the connecting vertex v_{i} where $i=$ $1,2,3, \ldots, n$. Then, $\operatorname{shack}\left(S_{n}, v_{i}, t\right)$ is a cycle graph (circle) with n vertices, which is copied by t with the connecting vertex v_{i} with $i=1,2,3, \ldots, n$. And $\operatorname{shack}\left(K_{n, n}, v_{i}, t\right)$ is a complete graph.

C. Research methods

The method used in this research is qualitative research. The purpose of this study is to explore the properties of the graph shackle operation results. The following will be explained in more detail.

1. Types of research

This research uses a literature study approach. This is under the objectives of this study, that is to explore the characteristics and properties of the graph from the shackle operation. The graphs used are Complete graph $\left(K_{n}\right)$, bipartite complete graph $\left(K_{n, n}\right)$, and circle graph $\left(S_{n}\right)$. In addition, this study aims to prove the chromatic number of graph $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right)$, $\operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, and $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)$.

2. Research Subject

The subject of this research is a graph resulting from the shackle operation. Shackle graph is obtained from Complete graph $\left(K_{n}\right)$, bipartite complete graph $\left(K_{n, n}\right)$, and circle graph $\left(S_{n}\right)$. More specifically, this study explores the characteristics and prove the chromatic number of graphs $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right), \operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, and $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)$.

3. Prosedure

This research procedure consists of four stages. First, it examines the definition of shackle operations on a graph. Based on the definition of the shackle operation, the researcher performs shackle operations on Complete graph $\left(K_{n}\right)$, bipartite complete graph $\left(K_{n, n}\right)$, and circle graph $\left(S_{n}\right)$. Second, generalize the graphs $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right), \operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, and $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j}, 1\right)}, t\right)$. Third, the generalization construct graphs $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right)$, $\operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, and $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j, 1}\right)}, t\right)$. And finally, explore the properties of graphs $\operatorname{Shack}\left(K_{n}, v_{(j, i)}, t\right), \operatorname{Shack}\left(S_{n}, v_{(j, i)}, t\right)$, and $\operatorname{Shack}\left(K_{(n, n)}, v_{\left(r_{j, 1}\right)}, t\right)$. Conjecture the chromatic number. And the final stage, prove the chromatic number of Graph A.

D. Research Results and Discussion

1. Graph $\operatorname{Shack}\left(K_{n}, v_{i}, t\right)$

Based on Figure 5, without lost generalization, for example, we select vertex $v_{(1, i)}$ which is opposite to vertex $v_{(1,1)}$, then Graph $\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)$ is a graph that has a set of vertices $V=\left\{v_{(j, k)}: 1 \leq j \leq t, 1 \leq k \leq n, k \neq i\right\} \cup\left\{v_{(j, k)}: 1 \leq j \leq t, k=i\right\}$ and set of edges $E=$ $\left\{e_{(1, k, l)}=\left(v_{(1, k)} v_{(1, l \neq k)}\right): 1 \leq k \leq n, 1 \leq l \leq n\right\} \cup\left\{e_{(j, k, l)}=\left(v_{(j, k)} v_{(j, l \neq k)}\right): 2 \leq j \leq t, 1 \leq\right.$ $k, l \leq n\} \cup\left\{e_{(j+1, i, l)}=\left(v_{(j, i)} v_{(j+1, l \neq i)}\right): 1 \leq j \leq t-1,2 \leq l \leq n\right\}$. Where $|V|=(n-1) t-$

1 and $|E|=t C_{2}^{n+1}$. Additionally obtained $\quad \Delta\left(\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)\right)=2(n-1) \quad$ and $\delta\left(\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)\right)=n-1$.

Figure 5. Graph $\operatorname{Shack}\left(K_{n}, v_{i}, t\right)$

Teorema 1.

The chromatic number of graphs $\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)$ is n, for every $n \in \mathbb{N}$.

$$
\chi\left(\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)\right)=n, n \in \mathbb{N}
$$

Proof.

Figure 6. $\chi\left(\operatorname{shack}\left(K_{6}, v_{(1,1)}, 4\right)\right)=6$
Graph $\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)$ has t subgraph K_{n}. Therefore, the chromatic number of the Graph $\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)$ depends on subgraph K_{n}. Subgraph K_{n} is a complete graph, each vertex is adjacent to another vertex, $d\left(v_{i}\right)=n-1$. Therefore, at least with the color set $C=$ $\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}$, subgraph K_{n} can be colored. Thus, $\chi\left(K_{n}\right)=n$ (Mujib, 2011).
Next, we will show $\chi\left(\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)\right)=n, n \in \mathbb{N}$. Figure 6 as an illustration of shackle graph coloring. First, we do the coloring on subgraph 1, subgraph K_{n} with color set C, by coloring it counterclockwise. Furthermore, the coloring of subgraph 2 is colored clockwise with the color set C. And so on until subgraph t. So that $\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)$ can be colored with the color set C. Thus, $\chi\left(\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)\right)=n, n \in \mathbb{N} \boldsymbol{\square}$

2. Graph $\operatorname{Shack}\left(S_{n}, v_{i}, t\right)$

Figure 7. Graph $\operatorname{Shack}\left(S_{n}, v_{i}, t\right)$
Figure 7 shows the construction of a $\operatorname{shack}\left(S_{n}, v_{(j, i)}, t\right)$. Graph $\operatorname{shack}\left(S_{n}, v_{(j, i)}, t\right)$ has the set of vertices $V=\left\{\left\{v_{(j, k)}: 1 \leq j \leq t, 1 \leq k \leq n, k \neq i\right\} \cup\left\{v_{(j, k)}: 1 \leq j \leq t, k=i\right\}\right\}$ dan the set edges $E=\left\{e_{(j, k)}=\left(v_{(j, k)} v_{(j, k+1)}\right): 1 \leq j \leq t, 1 \leq k \leq n\right\} \cup\left\{e_{(j+1, k)}=\left(v_{(j, i)} v_{(j+1, k)}\right): 1 \leq j \leq\right.$ $t, k=2, n\}$. Obtained $\quad|V|=(n-1) t-1, \quad|E|=t n, \quad \Delta\left(\operatorname{shack}\left(S_{n}, v_{(j, i)}, t\right)\right)=4$, and $\delta\left(\operatorname{shack}\left(S_{n}, v_{(j, i)}, t\right)\right)=2$.

Teorema 2.

The chromatic number of graphs $\operatorname{shack}\left(S_{n}, v_{i}, t\right)$ is 2 if n even or 3 if n odd, for every $n \geq$ $3, n \in N$.

$$
\chi\left(\operatorname{shack}\left(S_{n}, v_{i}, t\right)\right)= \begin{cases}2, & \text { if n even } \\ 3, & \text { if } n \text { odd }\end{cases}
$$

Figure 8. $\chi\left(\operatorname{shack}\left(S_{5}, v_{1}, 4\right)\right)=3$

Proof.

It is known that $\chi\left(S_{n}\right)=2$ for n even and $\chi\left(S_{n}\right)=3$ for n odd (Mujib, 2011). Because the shack graph $\operatorname{shack}\left(S_{n}, v_{i}, t\right)$ has t subgraph S_{n}. Then the vertex coloring of the shack graph $\operatorname{shack}\left(S_{n}, v_{i}, t\right)$ depends on the coloring of S_{n}. Vertex v_{i} as a link between subgraphs. Therefore, each subgraph can always be colored with the color in S_{n}. Thus, $\chi\left(\operatorname{shack}\left(S_{n}, v_{i}, t\right)\right)=2$ for n even, and $\chi\left(\operatorname{shack}\left(S_{n}, v_{i}, t\right)\right)=3$ for n odd.
3. Graph $\operatorname{Shack}\left(K_{n, n}, v_{\left(r_{j}, i\right)}, t\right)$

Figure 9. Graph $\operatorname{Shack}\left(K_{n, n}, v_{\left(r_{j}, i\right)}, t\right)$
Graph $\operatorname{shack}\left(K_{(n, n)}, v_{\left(r_{j}, i\right)}, t\right)$ is shown in Figure 9. Graph $\operatorname{shack}\left(K_{(n, n)}, v_{\left(r_{j}, i\right)}, t\right)$ has the set of vertices $V=\left\{\left\{v_{\left(l_{1}, 1\right)}\right\} \cup\left\{v_{\left(l_{j}, i\right)}: 1 \leq j \leq t, 2 \leq i \leq n\right\} \cup\left\{v_{\left(r_{j}, i\right)}: 1 \leq j \leq t, 1 \leq i \leq\right.\right.$ $n\}\}$ and the set of edges $E=\left\{e_{(j, k)}=\left(v_{\left(l_{j}, k\right)} v_{\left(r_{j}, i\right)}\right): 1 \leq j \leq t, 1 \leq k, i \leq n\right\} \cup\left\{e_{(j, k)}=\right.$ $\left.\left(v_{\left(l_{j}, k\right)} v_{\left(r_{j+1}, i\right)}\right): 1 \leq j \leq t-1,1 \leq k, i \leq n\right\}$. Obtained $\quad|V|=2 n t, \quad|E|=t n^{2}$, $\Delta\left(\operatorname{shack}\left(K_{n, n}, v_{(j, i)}, t\right)\right)=2 n$, and $\delta\left(\operatorname{shack}\left(K_{n, n}, v_{(j, i)}, t\right)\right)=n$.

Teorema 3.

The chromatic number of graphsShack $\left(K_{n, n}, v_{i}, t\right)$ is, for every $n \in N$.

$$
\chi\left(\operatorname{Shack}\left(K_{n, n}, v_{i}, t\right)\right)=2
$$

Proof.

Graph $\operatorname{Shack}\left(K_{n, n}, v_{i}, t\right)$ has t subgraph of $K_{n, n}$. Subgraph $K_{n, n}$ k-th is a bipartite subgraph consisting of two sets of vertices $V_{X_{k}}=\left\{v_{\left(l_{k}, i\right)}: 1 \leq k \leq t, 2 \leq i \leq n\right\} \cup\left\{v_{\left(r_{k-1}, i\right)}: 2 \leq k \leq t\right\}$ and $V_{Y_{k}}=\left\{v_{\left(r_{k}, i\right)}: 1 \leq k \leq t, 1 \leq i \leq n\right\}$. therefore, $\chi\left(K_{n, n}\right)=2$ (Mujib, 2011). Suppose given the color set $C=\left\{c_{1}, c_{2}\right\}$. Because every vertex in $V_{X_{k}}$ independent, then with color c_{1}, the set vertices $V_{X_{k}}$ is colored. In the same way for set $V_{Y_{k}}$, because every vertex in $V_{Y_{k}}$ independent dan connected to the vertex on $V_{X_{k}}$, then it is enough to use color c_{2}. Since vertex $v_{\left(r_{k}, i\right)} \in V_{X_{k+1}} \cap$ $V_{Y_{k}}$, subgraph $K_{n, n}(k+1) t h$, set of vertices $V_{X_{k+1}}$ colored with the same color as the vertex $v_{\left(r_{k}, i\right)}$ that is c_{2}. Meanwhile, the set of vertices $V_{Y_{k}}$ will be colored c_{1}. Thus, $\chi\left(\operatorname{Shack}\left(K_{n, n}, v_{i}, t\right)\right)=2$

E. Conclusion

Based on the results of the shackle operation on the complete graph K_{n}, the cycle graph S_{n}, and the Complete Bipartite graph $K_{n, n}$, several conclusions are obtained: 1) The $\operatorname{Shack}\left(K_{n}, v_{i}, t\right)$ graph has a maximum degree of $2(n-1)$. This happens because a point is a linkage between components, so $\Delta(G)$ is a multiple of two. 2) The chromatic number of
$\chi\left(\operatorname{shack}\left(K_{n}, v_{(j, i)}, t\right)\right)=\chi\left(K_{n}\right)=n$. 3) The $\operatorname{Shack}\left(S_{n}, v_{i}, t\right)$ graph also has a maximum vertex degree multiple of two, so $\Delta(G)=4$. 4) The chromatic number of $\chi\left(\operatorname{shack}\left(S_{n}, v_{i}, t\right)\right)=\chi\left(S_{n}\right)$. 5) The $\operatorname{shack}\left(K_{(n, n)}, v_{(j, i)}, t\right)$ graph is also the same, has $\Delta(G)=2 n$. 6) The chromatic number of $\chi\left(\operatorname{shack}\left(K_{(n, n)}, v_{(j, i)}, t\right)\right)=\chi\left(K_{n, n}\right)=2$. 7) The shackle product graph produces t component and the generator graph as a subgraph of the shackle graph. The degrees of the generating graph vertex stand except for the linkage vertices. Chromatic number graph shackle equal to generator subgraph. Based on the shackle graph chromatic number, some further research can be recommended. Explore several types of chromatic numbers such as game chromatic numbers, multichromatic numbers, and star chromatic numbers.

Bibliography

Bondy, J. A., \& Murty, U. S. R. (2008). Graph theory with applications (S. Axler \& K. A. Ribet, Eds.). New York: Springer.
Diana, E. L., Suryaningtyas, W., \& Suprapti, E. (2016). Pengaturan lampu lalu lintas di persimpangan jalan ahmad yani giant dengan aplikasi pewarnaan teori graf. MUST: Journal of Mathematics Education, Science and Technology, 1(1), 69-85.
Diestel, R. (2005). Graph teory (Electronic). New York: Springer-Verlag Heidelberg.
Hartsfield, N., \& Ringel, G. (2003). Pearls in graph theory: A comprehensive introduction. New York: Dover Publication, Inc.
Maarif, S. (2017). Aplikasi pewarnaan titik pada graph dalam pembuatan jadwal pelajaran. Pi: Mathematics Education Journal, 1(1), 22-26.
Maryati, T. K., Salman, A. N. M., Baskoro, E. T., Ryan, J., \& Miller, M. (2010). On Hsupermagic labelings for certain shackles and amalgamations of a connected graph. Utilitas Mathematica, 83(October 2016), 333-342.
Mujib, A. (2011). Bilangan kromatik permainan pada beberapa graf hasil kali tensor. Bandung: nstitut Teknologi Bandung.
Mujib, A., \& Assiyatun, H. (2011). Game chromatic numbers of tensor product graphs. Interior, 1-8.
Saifudin, I. (2020). Power Domination Number On Shackle Operation with Points as Lingkage. JTAM | Jurnal Teori Dan Aplikasi Matematika, 4(1), 1. https://doi.org/10.31764/jtam.v4i1.1579

